9. Partial Fractions
c2. Integral Examples
On previous pages, we found the partial fraction expansions for several
rational functions. Here are their integrals:
The first four integrals just need \(u\)-substitutions.
Non-Repeated Linear Factors
Compute: \(\displaystyle \int \dfrac{x^2-11x+12}{x^3-5x^2+6x}\,dx\)
given that
\(\dfrac{x^2-11x+12}{x^3-5x^2+6x}
=\dfrac{2}{x}+\dfrac{3}{x-2}-\dfrac{4}{x-3}\).
How are the coefficients found?
\[\begin{aligned} \int \dfrac{x^2-11x+12}{x^3-5x^2+6x}\,dx &=\int \dfrac{2}{x}\,dx+\int \dfrac{3}{x-2}\,dx-\int \dfrac{4}{x-3}\,dx \\ &=2\ln|x|+3\ln|x-2|-4\ln|x-3|+C \end{aligned}\]
Compute: \(\displaystyle \int \dfrac{x^2+12x-4}{x^3-4x}\,dx\)
given that
\(\dfrac{x^2+12x-4}{x^3-4x}
=\dfrac{1}{x}+\dfrac{3}{x-2}-\dfrac{3}{x+2}\).
How are the coefficients found?
\(\displaystyle \int \dfrac{x^2+12x-4}{x^3-4x}\,dx =\ln|x|+3\ln|x-2|-3\ln|x+2|+C\)
\[\begin{aligned} \int \dfrac{x^2+12x-4}{x^3-4x}\,dx &=\int \dfrac{1}{x}\,dx+\int \dfrac{3}{x-2}\,dx-\int \dfrac{3}{x+2}\,dx \\ &=\ln|x|+3\ln|x-2|-3\ln|x+2|+C \end{aligned}\]
Repeated Linear Factors
Compute: \(\displaystyle \int \dfrac{x^2+1}{x^4+3x^3+3x^2+x}\,dx\)
given that
\(\displaystyle \dfrac{x^2+1}{x^4+3x^3+3x^2+x}
=\dfrac{1}{x}-\dfrac{1}{x+1}-\dfrac{2}{(x+1)^3}\)
How are the coefficients found?
\[\begin{aligned} \int \dfrac{x^2+1}{x^4+3x^3+3x^2+x}\,dx &=\int \dfrac{1}{x}\,dx-\int \dfrac{1}{x+1}\,dx -\int \dfrac{2}{(x+1)^3}\,dx \\ &=\ln|x|-\ln|x+1|+\dfrac{1}{(x+1)^2}+C \end{aligned}\]
Compute: \(\displaystyle \int \dfrac{x^2+x-4}{x^4-8x^2+16}\,dx\)
given that
\(\dfrac{x^2+x-4}{x^4-8x^2+16}
=\dfrac{1}{8}\left[ \dfrac{2}{x-2}+\dfrac{1}{(x-2)^2}
-\dfrac{2}{x+2}-\dfrac{1}{(x+2)^2}\right]\).
How are the coefficients found?
\(\begin{aligned} \int &\dfrac{x^2+x-4}{x^4-8x^2+16}\,dx \\ &=\dfrac{1}{4}\ln|x-2|-\dfrac{1}{8(x-2) } -\dfrac{1}{4}\ln|x+2|+\dfrac{1}{8(x+2) }+C \end{aligned}\)
\[\begin{aligned} \int &\dfrac{x^2+x-4}{x^4-8x^2+16}\,dx \\ &=\dfrac{1}{4}\int \dfrac{1}{x-2}\,dx+\dfrac{1}{8}\int \dfrac{1}{(x-2)^2}\,dx \\ & \quad -\dfrac{1}{4}\int \dfrac{1}{x+2}\,dx-\dfrac{1}{8}\int \dfrac{1}{(x+2)^2}\,dx \\ &=\dfrac{1}{4}\ln|x-2|-\dfrac{1}{8(x-2)} \\ & \quad -\dfrac{1}{4}\ln|x+2|+\dfrac{1}{8(x+2)}+C \end{aligned}\]
Non-Repeated Quadratic Factors
Compute: \(\displaystyle \int \dfrac{13}{x^3-4x^2+13x}\,dx\)
given that
\(\dfrac{13}{x^3-4x^2+13x}=\dfrac{1}{x}+\dfrac{-(x-2)+2}{(x-2)^2+3^2}\)
How are the coefficients found?
The quadratic term must be broken up: \[ \int \dfrac{13}{x^3-4x^2+13x}\,dx =\int \dfrac{1}{x}\,dx-\int \dfrac{(x-2) }{(x-2)^2+3^2}\,dx+2\int \dfrac{1}{(x-2)^2+3^2}\,dx \] The first integral is \[ \int \dfrac{1}{x}\,dx=\ln|x| \] In the second integral, we make the substitution \(u=(x-2)^2+3^2\). Then \(du=2(x-2)\,dx\) and \(\dfrac{1}{2}\,du=(x-2)\,dx\) and so \[\begin{aligned} \int \dfrac{(x-2) }{(x-2)^2+3^2}\,dx &=\dfrac{ 1}{2}\int \dfrac{1}{u}\,du=\dfrac{1}{2}\ln|u|=\dfrac{1}{2} \ln|(x-2)^2+3^2| \\ &=\dfrac{1}{2}\ln|x^2-4x+13| \end{aligned}\] In the third integral, we make the substitution \(x-2=3\tan\theta\). Then \(dx=3\sec^2\theta\,d\theta\). So \[\begin{aligned} \int \dfrac{1}{(x-2)^2+3^2}\,dx &=\int \dfrac{1}{3^2\tan^2\theta+3^2}\,3\sec^2\theta\,d\theta =\dfrac{1}{3}\int \dfrac{\sec^2\theta}{\tan^2\theta+1}\,d\theta \\ &=\dfrac{1}{3}\int 1\,d\theta=\dfrac{1}{3}\theta=\dfrac{1}{3}\arctan \left(\dfrac{x-2}{3}\right) \end{aligned}\] Putting these together, we get \[ \int \dfrac{13}{x^3-4x^2+13x}\,dx=\ln|x| -\dfrac{1}{2}\ln|x^2-4x+13|+\dfrac{2}{3}\arctan\left(\dfrac{x-2}{3}\right)+C \]
Compute: \(\displaystyle \int \dfrac{1}{x^4-16}\,dx\)
given that
\(\dfrac{1}{x^4-16}
=\dfrac{1}{32}\left[-\dfrac{4}{x^2+4}-\dfrac{1}{x+2}+\dfrac{1}{x-2}\right]\).
How are the coefficients found?
Remember: \[ \int \dfrac{1}{u^2+1}\,du =\arctan u+C \]
\(\begin{aligned} \int &\dfrac{1}{x^4-16}\,dx \\ &=-\dfrac{1}{16}\arctan\left(\dfrac{x}{2}\right) -\dfrac{1}{32}\ln|x+2|+\dfrac{1}{32}\ln|x-2|+C \end{aligned}\)
\[\begin{aligned} \int &\dfrac{1}{x^4-16}\,dx \\ &=-\dfrac{1}{8}\int \dfrac{1}{x^2+4}\,dx -\dfrac{1}{32}\int \dfrac{1}{x+2}\,dx +\dfrac{1}{32}\int \dfrac{1}{x-2}\,dx \end{aligned}\] The first integral can be done with the trig substitution \(x=2\tan\theta\) or with the ordinary substutution \(x=2u\) if we remember that: \[ \int \dfrac{1}{u^2+1}\,du =\arctan u+C \] or by recognizing the derivative of \(f=\arctan\dfrac{x}{2}\) is: \[ f'=\dfrac{1}{1+\left(\dfrac{x}{2}\right)^2}{\dfrac{1}{2}} =\dfrac{2}{4+x^2} \] The second and third integrals are simple logs. So: \[\begin{aligned} \int &\dfrac{1}{x^4-16}\,dx \\ &=-\dfrac{1}{16}\arctan\left(\dfrac{x}{2}\right) -\dfrac{1}{32}\ln|x+2|+\dfrac{1}{32}\ln|x-2|+C \end{aligned}\]
Repeated Quadratic Factors
This example is probably harder than anything you will be asked to do in this course. It is included for completeness.
Compute: \(\displaystyle \int \dfrac{100}{(x-1) \left((x-2)^2+3^2\right)^2}\,dx\)
given that
\(\dfrac{100}{(x-1) \left((x-2)^2+3^2\right)^2}
=\dfrac{1}{x-1}+\dfrac{-(x-2)+1}{(x-2)^2+3^2}+\dfrac{-10(x-2)+10}{\left((x-2)^2+3^2\right)^2}\)
How are the coefficients found?
Both quadratic terms must be broken up:
\[\begin{aligned}
\int &\dfrac{100}{(x-1) \left((x-2)^2+3^2\right)^2}\,dx \\
&=\int \dfrac{1}{x-1}\,dx-\int \dfrac{(x-2) }{(x-2)^2+3^2}\,dx
+\int \dfrac{1}{(x-2)^2+3^2}\,dx \\
& \quad -10\int \dfrac{(x-2) }{\left((x-2)^2+3^2\right)^2}\,dx
+10\int \dfrac{1}{\left((x-2)^2+3^2\right)^2}\,dx
\end{aligned}\]
The first integral is \(\ln|x-1|\). The second and fourth
integrals may be done with the substitution \(u=(x-2)^2+3^2\).
Then \(du=2(x-2)\,dx\) and so \((x-2)\,dx=\dfrac{1}{2}\,du\). Thus
\[
\int \dfrac{(x-2) }{(x-2)^2+3^2}\,dx
=\dfrac{1}{2}\int \dfrac{1}{u}\,du
=\dfrac{1}{2}\ln|u|
=\dfrac{1}{2}\ln\left|(x-2)^2+3^2\right|
\]
\[
\int \dfrac{(x-2) }{\left((x-2)^2+3^2\right)^2}\,dx
=\dfrac{1}{2}\int \dfrac{1}{u^2}\,du
=-\dfrac{1}{2u}
=\dfrac{-1}{2\left((x-2)^2+3^2\right) }
\]
The third and fifth integrals may be done with the substitution \(x-2=3\tan\theta\).
Then \(dx=3\sec^2\theta\,d\theta\). Thus the third integral is:
\[\begin{aligned}
\int &\dfrac{1}{(x-2)^2+3^2}\,dx
=\int \dfrac{1}{3^2\tan^2\theta+3^2}\,3\sec^2\theta\,d\theta \\
&=\dfrac{1}{3}\int \dfrac{\sec^2\theta}{\tan^2\theta+1}\,d\theta
=\dfrac{1}{3}\int 1\,d\theta
=\dfrac{1}{3}\theta \\
&=\dfrac{1}{3}\arctan \left(\dfrac{x-2}{3}\right)
\end{aligned}\]
And the fifth integral is:
\[\begin{aligned}
\int &\dfrac{1}{\left((x-2)^2+3^2\right)^2}\,dx
=\int \dfrac{1}{\left(3^2\tan^2\theta+3^2\right)^2}\,3\sec^2\theta\,d\theta \\
&=\dfrac{1}{27}\int \dfrac{\sec^2\theta}{\left(\sec^2\theta\right)^2}\,d\theta
=\dfrac{1}{27}\int \cos^2\theta\,d\theta
=\dfrac{1}{27}\int \dfrac{1+\cos(2\theta) }{2}\,d\theta \\
&=\dfrac{1}{54}\left(\theta+\dfrac{\sin(2\theta) }{2}\right)
=\dfrac{1}{54}(\theta+\sin\theta\cos\theta)
\end{aligned}\]
Now since \(\tan\theta=\dfrac{x-2}{3}\), we have
\(\sin\theta=\dfrac{x-2}{\sqrt{(x-2)^2+3^2}}\) and
\(\cos\theta=\dfrac{3}{\sqrt{(x-2)^2+3^2}}\).
So the fifth integral becomes
\[
\int \dfrac{1}{\left((x-2)^2+3^2\right)^2}\,dx
=\dfrac{1}{54}\left(\arctan \left(\dfrac{x-2}{3}\right)
+\dfrac{3(x-2) }{(x-2)^2+3^2}\right)
\]
Putting these together, we get
\[\begin{aligned}
\int &\dfrac{100}{(x-1) \left((x-2)^2+3^2\right)^2}\,dx \\
&=\int \dfrac{1}{x-1}\,dx-\int \dfrac{(x-2) }{(x-2)^2+3^2}\,dx
+\int \dfrac{1}{(x-2)^2+3^2}\,dx \\
& \quad -10\int \dfrac{(x-2) }{\left((x-2)^2+3^2\right)^2}\,dx
+10\int \dfrac{1}{\left((x-2)^2+3^2\right)^2}\,dx \\
&=\ln|x-1|-\dfrac{1}{2}\ln|(x-2)^2+3^2|
+\dfrac{1}{3}\arctan \left(\dfrac{x-2}{3}\right) \\
& \quad -10\left[ \dfrac{-1}{2\left((x-2)^2+3^2\right) }\right]
+10\left[ \dfrac{1}{54}\left(\arctan \left(\dfrac{x-2}{3}\right)
+\dfrac{3(x-2) }{(x-2)^2+3^2}\right) \right]+C \\
&=\ln|x-1|-\dfrac{1}{2}\ln\left|(x-2)^2+3^2\right|
+\dfrac{14}{27}\arctan \left(\dfrac{x-2}{3}\right) \\
& \quad +\dfrac{5}{(x-2)^2+3^2}+\dfrac{5}{9}\dfrac{x-2}{(x-2)^2+3^2}+C
\end{aligned}\]
The Bad News: This is a lot of work and you need to do it
slowly and carefully.
The Good News: This is as hard as it gets.
Compute: \(\displaystyle \int \dfrac{1}{x(x^2+1)^2}\,dx\)
given that
\(\dfrac{1}{x(x^2+1)^2}
=\dfrac{1}{x}-\dfrac{x}{x^2+1}-\dfrac{x}{(x^2+1)^2}\)
How are the coefficients found?
\(\begin{aligned} \int &\dfrac{1}{x(x^2+1)^2}\,dx \\ &=\ln|x|-\dfrac{1}{2}\ln|x^2+1|+\dfrac{1}{2(x^2+1) }+C \end{aligned}\)
\[\begin{aligned} \int &\dfrac{1}{x(x^2+1)^2}\,dx \\ &=\int \dfrac{1}{x}\,dx-\int \dfrac{x}{x^2+1}\,dx-\int \dfrac{x}{(x^2+1)^2}\,dx \end{aligned}\] The first integral is \(\ln|x|\). The second and third integrals are done with the substitution \(u=x^2+1\). Then \(du=2x\,dx\) and so \(x\,dx=\dfrac{1}{2}\,du\). Thus \[ \int \dfrac{x}{x^2+1}\,dx =\dfrac{1}{2}\int \dfrac{1}{u}\,du =\dfrac{1}{2}\ln|u|=\dfrac{1}{2}\ln|x^2+1| \] \[ \int \dfrac{x}{(x^2+1)^2}\,dx =\dfrac{1}{2}\int \dfrac{1}{u^2}\,du =-\dfrac{1}{2u} =-\dfrac{1}{2(x^2+1) } \] Putting these together, we get \[\begin{aligned} \int &\dfrac{1}{x(x^2+1)^2}\,dx \\ &=\ln|x|-\dfrac{1}{2}\ln|x^2+1|+\dfrac{1}{2(x^2+1) }+C \end{aligned}\]
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum